The Crystal Structure of Meliphanite*

By A. Dal Negro, G. Rossi and L. Ungaretti
Centro di Cristallografia del C.N.R., sez. VI, Istituto di Mineralogia dell'Università di Pavia, Italy

(Received 14 November 1966)
Meliphanite is a silicate of general formula $\mathrm{Ca}(\mathrm{Na}, \mathrm{Ca}) \mathrm{BeSi}_{2} \mathrm{O}_{6} \mathrm{~F}$. It is tetragonal with space group $I \overline{4}$, $Z=8$. The cell parameters are: $a=10 \cdot 516, c=9 \cdot 887, c / a=0 \cdot 940$. The crystal structure has been solved by comparison with the structure of the closely related silicate melilite and on the basis of considerations on the electrostatic equilibrium. The final bond distances and angles are obtained from coordinates refined by the least-squares method applied to three-dimensional data (final R value 10.4%. The crystal structure consists of infinite sheets of SiO_{4} and BeO_{4} tetrahedra between which Ca and $(\mathrm{Na}, \mathrm{Ca})$ are arranged; the coordination polyhedra of these cations are distorted trigonal prisms. The relationships between the crystal structures of melilite and meliphanite are described and a hypothesis is advanced in order to explain the observed differences between them.

Introduction

Meliphanite is a pegmatitic silicate which was carefully described by Brögger (1890) as tetragonal, with chemical formula: $\mathrm{Ca}_{4} \mathrm{Na}_{2} \mathrm{Be}_{4} \mathrm{Si}_{6} \mathrm{O}_{20} \mathrm{~F}_{2}$. Zachariasen (1930, 1931) showed the close chemical and crystallographic relationships between meliphanite and melilite $\left(\mathrm{Ca}_{2} \mathrm{MgSi}_{2} \mathrm{O}_{7}\right)$. About this argument see also Cannillo, Giuseppetti \& Tazzoli (1967).
Zachariasen measured the correct cell dimensions ($a=10 \cdot 60, c=9 \cdot 90 \AA$) and assigned to the mineral the more general formula: $(\mathrm{Ca}, \mathrm{Na})_{2} \mathrm{BeSi}_{2}(\mathrm{O}, \mathrm{OH}, \mathrm{F})_{7}$. This author assumed that meliphanite could be derived from the compound $\mathrm{Ca}_{2} \mathrm{BeSi}_{2} \mathrm{O}_{7}$ (considered as an 'ideal' meliphanite) which would have the same crystal structure as melilite with the replacement of Mg by Be . According to Zachariasen the presence of fluorine would cause some distortion in the structure of the 'ideal' compound. Thus meliphanite would have a crystal structure which is that of melilite distorted by the presence of fluorine.

The aim of this work is to determine the crystal structure of meliphanite and verify the correctness of Zachariasen's hypothesis.

Experimental

A sample of meliphanite from Brevig (Norway) was used for the determination of the crystal structure. The chemical formula, derived from two analyses carried out by us is: $\mathrm{Ca}_{1 \cdot 37} \mathrm{Na}_{0.63} \mathrm{Be}\left(\mathrm{Si}_{1 \cdot 87} \mathrm{Al}_{0 \cdot 13}\right) \mathrm{O}_{6 \cdot 25} \mathrm{~F}_{0.75}$. The theoretical density, computed on the basis of that formula, is $3.024 \mathrm{~g} . \mathrm{cm}^{-3}$; the experimental density is $3.012 \mathrm{g.cm}^{-3}$.

The lattice parameters were determined by measuring the 2θ values of appropriate reflexions and extrapolating the corresponding d against $\frac{1}{2}\left(\cos ^{2} \theta / \sin \theta+\cos ^{2} \theta / \theta\right)$

[^0]to $2 \theta=180^{\circ}$. The measurements were made with a single-crystal diffractometer. The values so obtained are: $a=10.516 \pm 0.002, c=9.887 \pm 0.002 \AA, c / a=0.940$.

A specimen of meliphanite with ellipsoidal shape (axes of the ellipsoid: $0.030,0.027,0.023 \mathrm{~cm}$) was used for recording intensities. Equi-inclination Weissenberg photographs of $h k l(l$ from 0 to 7) reflexions were taken with $\mathrm{Cu} K \alpha$ radiation, using the multiple film technique. Owing to the notable weakness of the levels with $l=2 n+1$, the exposure time of the corresponding X-ray pictures was doubled.

The possible space groups, according to the systematic absences, are $I 4, I \overline{4}, I 4 \mathrm{~m}$.

The intensities were measured on the integrated films with a Nonius microdensitometer. They were corrected for the Lorentz-polarization factor, absorption ($\mu=$ $150.84 \mathrm{~cm}^{-1}$, the transmission factors varying from 0.82 to $0 \cdot 12$; the correction was made assuming the shape of the crystal as spherical) and $\alpha_{1}-\alpha_{2}$ spot doubling. A secondary extinction correction was applied during the refinement.

Structure analysis

The starting points for the determination of the crystal structure of meliphanite were its chemical and crystallographic analogies with melilite. A comparison of the observed structure factors of the two minerals, and the mentioned weakness of the reflexions with $l=2 n+1$, suggested that the two crystal structures would be very similar and that the differences would arise from a new distribution of the atomic species in positions maintaining nearly the same coordinates as those of melilite. On the basis of this hypothesis the space group $I \overline{4}$ ($Z=8$) was chosen because the remaining ones would involve a radical change from the crystal structure of melilite.

Starting from these considerations and taking into account the presence of fluorine, which in natural silicates is never linked to silicon, several distributions of the atoms in the chosen space group were considered,
and the one which best fulfilled Pauling's electrostatic valency rule was submitted to refinement.

The refinement was carried out by the least-squares method (with a full-matrix program written for the Olivetti ELEA 6001 digital computer; Sgarlata, 1966) in order to minimize the unweighted differences $F_{o}-F_{c}$. Isotropic temperature factors for each atom were used, and in the calculation of the atomic scattering factors with Moore's (1963) constants it was assumed that calcium, sodium and fluorine were completely ionized, and silicon, beryllium and oxygen half-ionized. A few

Table 1. Atomic coordinates and isotropic thermal parameters

	x / a	y / b	z / c	B
	0.2549	0.0903	0.2556	$1.34 \AA^{2}$
Ca	0.050			
$(\mathrm{Na}, \mathrm{Ca})$	0.2419	0.851	0.7506	1.53
$\mathrm{Si}(1)$	0.0000	0.0000	0.0000	0.94
$\mathrm{Si}(2)$	0.0000	0.0000	0.5000	0.61
$\mathrm{Si}(3)$	0.5000	0.0000	0.0045	0.75
$\mathrm{Si}(4)$	0.2528	0.8885	0.9699	0.72
Be	0.2468	0.8915	0.4736	0.09
$\mathrm{O}(1)$	0.2518	0.2563	0.0879	1.36
$\mathrm{O}(2)$	0.1279	0.9657	0.4048	1.32
$\mathrm{O}(3)$	0.1273	0.9547	0.9003	1.18
$\mathrm{O}(4)$	0.3731	0.9604	0.4097	1.10
$\mathrm{O}(5)$	0.3743	0.9598	0.9092	1.34
$\mathrm{O}(6)$	0.2525	0.8927	0.1458	1.41
F	0.2478	0.8895	0.6340	1.38

cycles of three-dimensional least-squares reduced the R value from 27% to 12%.

A plot of $\ln \left(I_{c} / I_{o}\right)$ against I_{c} for the most intense reflexions showed some secondary extinction effect. A linear relationship between $\ln \left(I_{c} / I_{o}\right)$ and I_{c} was assumed and a least-squares secondary extinction coefficient was derived. This was applied to all the F_{o} 's by means of the formula: $F_{o \text { ocorr }}=F_{o \text { ext }} \cdot \exp \left(0 \cdot 5 \varepsilon I_{c}\right)$, where $\varepsilon=$ $5 \cdot 55.10^{-6}$. After this correction R was $10 \cdot 4 \%$ for the 395 observed reflexions and 12.7% for all 505 reflexions. This rather high value of the discrepancy index is due to the fact that one half of the total number of reflexions, belonging to the group with $l=2 n+1$, is very weak; this weakness considerably increases the errors in measuring intensities.

The anisotropic least-squares refinement did not give any acceptable result, probably because the ratio between the number of parameters and the experimental data was too high: 108 atomic and thermal parameters against 395 observed reflexions.

The coordinates and isotropic temperature factors are given in Table 1. The standard deviations in atomic coordinates which are not fixed by symmetry (Booth, 1946) are: $\sigma_{\mathrm{Ca}}=0.0002, \sigma_{\mathrm{Na}, \mathrm{Ca}}=0.0003, \sigma_{\mathrm{Si}}=0.0003$, $\sigma_{\mathrm{Be}}=0.0070, \sigma_{\mathrm{O}, \mathrm{F}}=0.0006$. The interatomic distances and angles are listed in Table 2. The standard deviations in bond distances and angles (Ahmed \& Cruick-

Table 2. Interatomic distances and angles
The distances and angles preceded by an asterisk occur twice, those preceded by a dagger occur four times.

$\mathrm{Si}(1)-\mathrm{O}(3)$	Bond length	Mean		Angle	Mean
	$\dagger 1.729$ A	1.729 A	$\mathrm{O}(3)-\mathrm{Si}(1)-\mathrm{O}\left(3^{\prime}\right)$	$\dagger 110.5^{\circ}$	
			$\mathrm{O}(3)-\mathrm{Si}(1)-\mathrm{O}\left(3^{\prime \prime}\right)$	*109.0	110.0°
$\mathrm{Si}(2)-\mathrm{O}(2)$	$\dagger 1.680$	$1 \cdot 680$			
			$\mathrm{O}(2)-\mathrm{Si}(2)-\mathrm{O}\left(2^{\prime}\right)$	$\dagger 111.9$	
$\mathrm{Si}(3)-\mathrm{O}(4)$	*1.631		$\mathrm{O}(2)-\mathrm{Si}(2)-\mathrm{O}\left(2^{\prime \prime}\right)$	*108.3	$110 \cdot 7$
$\mathrm{Si}(3)-\mathrm{O}(5)$	*1.681	1.656			
			$\mathrm{O}(4)-\mathrm{Si}(3)-\mathrm{O}(5)$	*107-2	
$\mathrm{Si}(4)-\mathrm{O}(1)$	1.582		$\mathrm{O}(4)-\mathrm{Si}(3)-\mathrm{O}\left(5^{\prime}\right)$	*105.5	
$\mathrm{Si}(4)-\mathrm{O}(3)$	$1 \cdot 643$		$\mathrm{O}(4)-\mathrm{Si}(3)-\mathrm{O}\left(4^{\prime}\right)$	118.0	
$\mathrm{Si}(4)-\mathrm{O}(5)$	1.598		$\mathrm{O}(5)-\mathrm{Si}(3)-\mathrm{O}\left(5^{\prime}\right)$	111.2	$109 \cdot 1$
$\mathrm{Si}(4)-\mathrm{O}(6)$	1.739	$1 \cdot 640$			
			$\mathrm{O}(1)-\mathrm{Si}(4)-\mathrm{O}(3)$	$105 \cdot 2$	
$\mathrm{Be}-\mathrm{O}(1)$	1.590		$\mathrm{O}(1)-\mathrm{Si}(4)-\mathrm{O}(5)$	$106 \cdot 4$	
$\mathrm{Be}-\mathrm{O}(2)$	1.623		$\mathrm{O}(1)-\mathrm{Si}(4)-\mathrm{O}(6)$	112.6	
$\mathrm{Be}-\mathrm{O}(4)$	1.639		$\mathrm{O}(3)-\mathrm{Si}(4)-\mathrm{O}(5)$	$106 \cdot 6$	
$\mathrm{Be}-\mathrm{F}$	1.586	$1 \cdot 610$	$\mathrm{O}(3)-\mathrm{Si}(4)-\mathrm{O}(6)$	114.0	
			$\mathrm{O}(5)-\mathrm{Si}(4)-\mathrm{O}(6)$	111.4	109.4
$\mathrm{Ca}-\mathrm{O}(6)$	2.335				
$\mathrm{Ca}-\mathrm{O}(2)$	$2 \cdot 382$		$\mathrm{O}(1)-\mathrm{Be}-\mathrm{O}(2)$	$105 \cdot 6$	
$\mathrm{Ca}-\mathrm{O}(4)$	$2 \cdot 394$		$\mathrm{O}(1)-\mathrm{Be}-\mathrm{O}(4)$	$106 \cdot 1$	
$\mathrm{Ca}-\mathrm{O}\left(6^{\prime}\right)$	2.404		$\mathrm{O}(1)-\mathrm{Be}-\mathrm{F}$	111.7	
$\mathrm{Ca}-\mathrm{O}(1)$	$2 \cdot 407$		$\mathrm{O}(2)-\mathrm{Be}-\mathrm{O}(4)$	$104 \cdot 5$	
Ca-F	2.498		$\mathrm{O}(2)-\mathrm{Be}-\mathrm{F}$	$115 \cdot 5$	
$\mathrm{Ca}-\mathrm{O}(3)$	2.717		$\mathrm{O}(4)-\mathrm{Be}-\mathrm{F}$	$112 \cdot 7$	$109 \cdot 4$
$\mathrm{Ca}-\mathrm{O}\left(4^{\prime}\right)$	2.736				
(Na, Ca)-O(1)	2.318				
(Na, Ca)-O(3)	$2 \cdot 350$				
(Na, Ca)-F	2.358				
(Na, Ca)-O(5)	2.476				
(Na, Ca)-O(6)	2.480				
(Na, Ca)- F^{\prime}	2.607				
(Na, Ca)-O(2)	2.707				
$(\mathrm{Na}, \mathrm{Ca})-\mathrm{O}\left(5^{\prime}\right)$	2.815				

shank, 1953; Darlow, 1960) are: $0.006 \AA$ for all distances except the $\mathrm{Be}-\mathrm{O}$ distances, for which they are $0.070 \AA ; 0.3^{\circ}$ for $\mathrm{O}-\mathrm{Si}-\mathrm{O}$ angles and 4.0° for $\mathrm{O}-\mathrm{Be}-\mathrm{O}$ angles. The observed and calculated structure factors are compared in Table 3.

Description and discussion of the structure

The silicon and beryllium atoms have a tetrahedral coordination. Fluorine is never linked to silicon but only to beryllium, calcium and sodium. The $\mathrm{Si}-\mathrm{O}$ and $\mathrm{Be}-\mathrm{O}$ distances are in good agreement with those found
in other silicates. The $\mathrm{Si}(1)-\mathrm{O}(3)$ distances $(1.73 \AA)$ are rather long for an SiO_{4} tetrahedron; it is possible that the amount of aluminum found in the analyses is concentrated in the site of $\operatorname{Si}(1)$.

In the chemical formula about two-thirds calcium and one-third sodium are present. The best agreement with the observed data was obtained by putting pure calcium in one position (' Ca ' in Tables 1 and 2) and $\frac{2}{3} \mathrm{Na}+\frac{1}{3} \mathrm{Ca}$ in the other (' Na, Ca ' in the Tables).

Calcium is surrounded by five oxygen atoms and one fluorine atom (actually, as one can see in the chemical formula, only $\frac{3}{4} \mathrm{~F}$ is present in one formula unit)

Table 3. Structure factors of meliphanite ($\times 10$)
Reflexions marked by an asterisk were unobservable weak; in these cases F_{o} is derived from $\frac{1}{2} I_{o} \min$.
h k

with distances ranging from $2 \cdot 33$ to $2 \cdot 50 \AA$ and by two more oxygen atoms at distances of 2.72 and $2.74 \AA$. These two oxygen atoms are not thought to participate in the coordination of calcium; the remaining oxygen atoms surround calcium at the corners of a distorted trigonal prism. (Na, Ca) has four oxygen and two fluorine atoms at an average distance of $2 \cdot 44 \AA$ and two oxygen atoms at distances of 2.72 and $2.82 \AA$. Also the coordination polyhedron of $(\mathrm{Na}, \mathrm{Ca})$, considering only the shortest distances, is a distorted trigonal prism (Fig. 1).

The crystal structure of meliphanite is closely related to that of melilite (Smith, 1953) and leucophanite (Cannillo et al., 1967). In melilite (Fig.2) $\mathrm{Si}_{2} \mathrm{O}_{7}$ groups are present. They are held together by isolated MgO_{4} tetrahedra to form twisted sheets of tetrahedra. Between these sheets the calcium atoms are located. In meliphanite the positions occupied in melilite by magnesium are not accupied by beryllium but by a silicon atom, and beryllium occurs in a position that in melilite is occupied by a silicon atom. Thus no $\mathrm{Si}_{2} \mathrm{O}_{7}$ group is present in meliphanite, but SiO_{4} tetrahedra form intersecting zigzag chains that build up 16 -membered rings, the centres of which are occupied by isolated SiO_{4} groups that are connected with the rings through BeO_{4} tetrahedra. As in melilite, the whole system of tetrahedra forms twisted sheets parallel to (001) which are held together by Ca and (Na, Ca) arranged between them. From this more convenient point of view (Zoltai, 1960) meliphanite can be classified as a single-sheet silicate like melilite and leucophanite.

As one can see, the suggestion of Zachariasen that the presence of fluorine in meliphanite would produce a distorted 'melilite' structure can be accepted but needs further consideration.

The lower tetragonal symmetry of meliphanite is not due only to the presence of fluorine but also to the fact that the calcium-sodium substitution is partially ordered ($c f$. also leucophanite). The presence of notable amounts of sodium in these pegmatitic minerals is due to the necessity of balancing the diminution of the negative charges as a consequence of the introduction of fluorine. Furthermore Zachariasen, without a complete structural analysis, could not explain how fluorine modifies the 'ideal' meliphanite structure. About this argument these observations can be made: synthetic Be -akermanite $\left(\mathrm{Ca}_{2} \mathrm{BeSi}_{2} \mathrm{O}_{7}\right.$, Goria, 1953) and gugiaite $\left(\mathrm{Ca}_{2} \mathrm{BeSi}_{2} \mathrm{O}_{7}\right.$, Peng, Tsao \& Chou, 1962) have crystal structures identical with that of Mg -melilite, beryllium taking the place of magnesium; in meliphanite if beryllium were to remain in the position occupied in Be-akermanite, fluorine would be connected with silicon while, in natural silicates, fluorine is never linked to silicon; the only way for fluorine to avoid a bond with silicon in a structure which is basically that of Be-akermanite, is for the silicon to occupy the site of beryllium in Be -akermanite and beryllium the place of one of the two silicon atoms.

The three silicates melilite, meliphanite and leucophanite are characterized by the presence of increasing amounts of fluorine and sodium and by a corresponding diminution of symmetry according to the following scheme:

Melilite	0	0	$P \overline{4} 2{ }_{1} m$
Meliphanite	$\frac{3}{4}$	$\frac{2}{3}$	$I \overline{4}$
Leucophanite	1	1	$P 1$

In order to explain completely the structural modifications due to fluorine, it would be of some interest

Fig.1. Schematic view of the crystal structure of meliphanite and key to the identification of the atoms and their coordination. One-half of the content of the unit cell is projected along [001]. Open circles represent Ca ; filled circles (Na, Ca). The numbers without other specification refer to oxygen atoms.

Fig. 2. (a) Schematic view of the crystal structure of melilite; the whole content of the unit cell is projected along [001]. Hatched tetrahedra represent MgO_{4} groups; open circles represent Ca atoms. (b) Schematic view of the crystal structure of meliphanite; one-half of the content of the unit cell is projected along [001]; dotted tetrahedra are BeO_{4} groups; open circles represent Ca , filled circles (Na, Ca). The tetrahedra lie at about $z=0, \mathrm{Ca}$ and (Na, Ca) at about $z=0 \cdot 250$.
to perform an experimental study of the melilite system with the introduction of increasing amounts of fluorine.

References

Ahmed, F. R. \& Cruickshank, D. W. J. (1953). Acta Cryst. 6, 385.
Bоoth, A. D. (1946). Proc. Roy. Soc. A, 188, 77.
Brögger, W. C. (1890). Z. Kristallogr. 16, 279.
Cannillo, E., Giuseppetti, G. \& Tazzoli, V. (1967). Acta Cryst. 23, 255.

Darlow, S. F. (1960). Acta Cryst. 13, 683.
Goria, C. (1953). Atti Accad. Torino, Classe sci. fis. mat. nat. 88, 153.
Moore, F. H. (1963). Acta Cryst. 16, 1169.
Peng, C.-S., Tsao, Y.-L. \& Chou, T.-Y. (1962). Scientia Sinica, 11, 977.
Sgarlata, F. (1965). Period. Min. 34, 401.
Smith, J. V. (1953). Amer. Min. 38, 643.
Zachariasen, W. H. (1930). Z. Kristallogr. 74, 226.
Zachariasen, W. H. (1931). Norsk geol. Tidsskr. 12, 577.
Zoltai, T. (1960). Amer. Min. 45, 960.

The Crystal Structure of $\mathbf{P b}_{\mathbf{3}} \mathbf{U O}_{\mathbf{6}}$

By Meta Sterns
Department of Chemistry, School of General Studies, Australian National University, Canberra, Australia

(Received 25 October 1966)

Abstract

The structure of $\mathrm{Pb}_{3} \mathrm{UO}_{6}$ has been determined from single-crystal data, by analysis of the three-dimensional Patterson distribution, Fourier and $\triangle \varrho$ syntheses and subsequent block-diagonal least-squares refinement to a final R value of 0.068 . The unit cell is orthorhombic, space group Pnam, with $a=13 \cdot 71$, $b=12 \cdot 36, c=8.21 \AA$ and $Z=8$. The uranium atoms are octahedrally coordinated to six oxygen atoms and the slightly distorted octahedra, by sharing apices, form infinite staggered chains in the z direction, the lead atoms and the remaining oxygen atoms being distributed in a rather irregular array between the chains.

Introduction

In the course of a systematic study of mixed oxides of uranium(VI) and lead(II), four discrete compounds, $\mathrm{Pb}_{3} \mathrm{UO}_{6}, \mathrm{~Pb}_{11} \mathrm{U}_{5} \mathrm{O}_{26}, \mathrm{PbUO}_{4}$ and $\mathrm{Pb}_{5} \mathrm{U}_{19} \mathrm{O}_{62}$ were prepared by solid-state reactions of oxide mixtures and characterized by chemical and X-ray powder phase analysis. Of these, only the monouranate PbUO_{4} has been described in the literature (Frondel \& Barnes, 1958; Kovba, Polunina, Simanov \& Ippolitova, 1961) and the conclusion of Frondel \& Barnes that it is isostructural with BaUO_{4}, the structure of which has been determined by Samson \& Sillén (1947), was confirmed by means of X-ray powder data. The new uranate $\mathrm{Pb}_{3} \mathrm{UO}_{6}$ could have been expected to be similar in structure to the known uranates $\mathrm{Ba}_{3} \mathrm{UO}_{6}, \mathrm{Sr}_{3} \mathrm{UO}_{6}$ and $\mathrm{Ca}_{3} \mathrm{UO}_{6}$, all of which have the same distorted cryolite type structure (Rüdorff \& Pfitzer, 1954; Sleight \& Ward, 1962; Rietveld, 1966) but a preliminary X-ray investigation of the polycrystalline material indicated a completely different type of structure, previously not encountered in any uranate. Therefore, when singlecrystal fragments were isolated from preparations of this phase, a complete structure determination was undertaken, the results of which are described here. A general survey of the system $\mathrm{Pb}-\mathrm{U}-\mathrm{O}$ and X-ray work on the other lead uranates will be published separately.

Experimental

Single-phase material $\mathrm{Pb}_{3} \mathrm{UO}_{6}$ was prepared in polycrystalline form by heating pelleted stoichiometric mixtures of $\mathrm{PbUO}_{4}\left(\right.$ or $\mathrm{U}_{3} \mathrm{O}_{8}$) and PbO at $600-650^{\circ} \mathrm{C}$. Heating at higher temperatures, to achieve sintering and possibly an increase in the crystallite size, resulted in decomposition of $\mathrm{Pb}_{3} \mathrm{UO}_{6}$ to $\mathrm{Pb}_{11} \mathrm{U}_{5} \mathrm{O}_{26}$ and PbO . Only by heating $\mathrm{Pb}_{3} \mathrm{UO}_{6}$ in an excess of $\mathrm{PbO}(\mathrm{Pb}: \mathrm{U}$ $\sim 20: 1$) at $800^{\circ} \mathrm{C}$ could sintered dark red $\mathrm{Pb}_{3} \mathrm{UO}_{6}$ be obtained, in a matrix of pale yellow PbO . The latter could not be leached out selectively, since any solvent for PbO also dissolves the uranate. The two phases had therefore to be separated by hand-picking the crushed mass under the microscope, and after careful examination for phase purity fragments suitable for single-crystal work were selected. The crystal fragments were usually lath-shaped, with no morphological faces, the longest dimension being mainly along the c axis and the shortest along the b axis.

Unit-cell dimensions were determined from oscillation and Weissenberg photographs and also from Guinier powder patterns of the polycrystalline material, calibrated internally with potassium chloride. The unit cell is orthorhombic;

$$
\begin{gathered}
a=13.71 \pm 0.01, \quad b=12.36 \pm 0.01, \quad c=8.21 \pm 0.005 \AA \\
U=1391 \AA^{3}, \text { F.W. } 955 \cdot 6 .
\end{gathered}
$$

[^0]: * Paper presented at the VII Congress of the International Union of Crystallography, Moscow, USSR, July 1966.

